Cell-cell fusion induced by the avian reovirus membrane fusion protein is regulated by protein degradation.
نویسندگان
چکیده
The p10 fusion-associated small transmembrane protein of avian reovirus induces extensive syncytium formation in transfected cells. Here we show that p10-induced cell-cell fusion is restricted by rapid degradation of the majority of newly synthesized p10. The small ectodomain of p10 targets the protein for degradation following p10 insertion into an early membrane compartment. Paradoxically, conservative amino acid substitutions in the p10 ectodomain hydrophobic patch that eliminate fusion activity also increase p10 stability. The small amount of p10 that escapes intracellular degradation accumulates at the cell surface in a relatively stable form, where it mediates cell-cell fusion as a late-stage event in the virus replication cycle. The unusual relationship between a nonstructural viral membrane fusion protein and the replication cycle of a nonenveloped virus has apparently contributed to the evolution of a novel mechanism for restricting the extent of virus-induced cell-cell fusion.
منابع مشابه
O-8: Molecular Mechanisms of Membrane Fusion Involved in Fertilization
Background: Assisted fertilization procedures are a currently widespread practice to regulate reproduction in humans and animals. The arising question is why the human being manipulating gametes to generate new individuals, if we do not understand yet the molecular mechanism of fertilization?. Successful completion of fertilization in mammals is dependent on three membrane fusion events: 1. the...
متن کاملCloning & Expression of F Protein Gene (HR1 region) of Newcastle Disease Virus NR43 Isolate from Iran in E.coli
Background and Aims: NDV (Newcastle Disease Virus) is one of the viruses that cause disease in avian with severe economic losses in the poultry industry in many countries. Fusion protein (F) which plays a major role in the virus pathogenicity contains several regions that have a role in the fusion process. Mutation in the sequence of HR1 & HR2 regions of this protein prevents fusion of the viru...
متن کاملMultifaceted sequence-dependent and -independent roles for reovirus FAST protein cytoplasmic tails in fusion pore formation and syncytiogenesis.
Fusogenic reoviruses utilize the FAST proteins, a novel family of nonstructural viral membrane fusion proteins, to induce cell-cell fusion and syncytium formation. Unlike the paradigmatic enveloped virus fusion proteins, the FAST proteins position the majority of their mass within and internal to the membrane in which they reside, resulting in extended C-terminal cytoplasmic tails (CTs). Using ...
متن کاملIn silico design and expression of a novel fusion protein of HBHA and high antigenic region of FAP-P of Mycobacterium avium subsp. paratuberculosis in Pichia pastoris
Mycobacterium avium subsp. paratuberculosis (MAP) is the etiologic agent of Johne's disease in ruminants and there has been a shift in the public health approach to MAP and human diseases like Crohn's disease. The prevention of infection by MAP in ruminants is thought to deter the high impact of economic losses in the level of dairy industry and possible spreading of this pathogen in dairy prod...
متن کاملThe S4 genome segment of baboon reovirus is bicistronic and encodes a novel fusion-associated small transmembrane protein.
We demonstrate that the S4 genome segment of baboon reovirus (BRV) contains two sequential partially overlapping open reading frames (ORFs), both of which are functional in vitro and in virus-infected cells. The 15-kDa gene product (p15) of the 5"-proximal ORF induces efficient cell-cell fusion when expressed by itself in transfected cells, suggesting that p15 is the only viral protein required...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of virology
دوره 78 11 شماره
صفحات -
تاریخ انتشار 2004